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Abstract
We examine the effect of spatial confinement on the hyperfine exchange
interaction between two donor nuclei in a semiconductor quantum dot. On
the basis of an exactly solvable model we look at the strength of the interaction
in the ionized and neutral cases as one of the nuclei approaches the dot surface.

1. Introduction

Among the most promising architectures for the design of scalable units (qubits) for quantum
computation are those based on manipulating nuclear spins of donor species embedded in a
spatially confined semiconducting medium [1, 2]. Interaction among such spins arises from
the hyperfine induced exchange interaction having the form C �I1 · �I2, where �I denotes a nuclear
spin and the coupling constant C depends on the distance between the pair of spins as well
as the properties of the medium. Due to spatial confinement, boundary effects may also play
a role. A standard way of modelling confinement quantum mechanically is to require the
wavefunctions to vanish at the bounding surface. This corresponds to a reduced electron
density in this region and suggests that if a nuclear spin approaches such a wall, the hyperfine
interaction, which is roughly proportional to the electron density, is also reduced, leading to
a reduction in the exchange coupling related to this spin. This could well set a fundamental
limit on the size of qubits based on this structural principle.

To estimate the importance of this effect we consider the following very simple model
sketched in figure 1. Two point impurities with nuclear spin �I are fixed at the foci of an
ellipsoidal semiconductor dot described by a scalar effective mass m∗, and the wavefunction
of a conduction electron is obtained in the effective mass approximation assuming that the
donor atoms are singly charged Coulomb centres screened by a scalar dielectric constant κ
and that the wavefunction vanishes at the surface. From this wavefunction we can calculate
the donor electron’s contribution to the exchange coupling constant. By varying the interfocal
separation R and the eccentricity of the ellipsoid, one can estimate how C depends on R and
the distance s of the nuclear spins from the surface (s is the distance from a focus to the adjacent
apex). The case of un-ionized donors is also examined.
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Figure 1. Ellipsoidal geometry.

The following section contains a brief review of the genesis of the dominant term in the
hyperfine interaction and presents a formalism for calculating the coupling constant. The next
section describes the how the electron wavefunction is calculated for an ellipsoid, and the
results are summarized and discussed in the last section.

2. Formalism

Basically, the interaction between an electron and a nuclear magnetic moment, �µe and �µn

respectively, is given by the usual dipole–dipole Hamiltonian

Hen = �µe · �µn

r3
− 3

(�µe · �r)(�µn · �r)
r5

, (1)

where �r is the location of the electron relative to the nucleus. If the electron wavefunction is
the spinor � (with spatial part ψ), the interaction energy is

〈�|Hen|�〉 = �µe · �µn

∫
|ψ(�r )|2(1 − 3 cos2 θ)

dr

r
d�. (2)

This is generally negligible except for an s state whereψ(0) �= 0 and the integral is undefined.
The resolution of this difficulty is well established [3] and leads to

〈�|Hen|�〉 = −8π

3
�µe · �µn|ψ(0)|2. (3)

Thus, effectively, the hyperfine interaction is dominated by the Fermi contact Hamiltonian

Hen = −8π

3
�µe · �µnδ(�r ). (4)

An electron described by Hamiltonian H0 in the presence of nuclear moments �µ1 at �r = �R1

and �µ2 at �r = �R2 thus has the Hamiltonian

H = H0 + Hn, Hn = 16π

3
µ0

∑
�µ j · �Sδ(�r − �R j). (5)

Expanding the partition function Z(β) = Tr{e−βH } in powers of Hn, the bilinear term is

Z12(β) = β2

(
16π

3

)2

µ2
0

∫ 1

0
du Tr{ �µ1 · �Sδ(�r − �R1)e−βH0(1−u) �µ2 · �Sδ(�r − �R2)e−βH0u}. (6)

If H0 does not depend on �µ j ,

Z12 =
(

16πβµ0

3

)2

Tr{(�µ1 · �S)(�µ2 · �S)
∫ 1

0
e−βH0uδ(�r − �R1)e−βH0(1−u)δ(�r − �R2) du}. (7)
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The spin trace is h̄2 �µ1 · �µ2/2 and evaluating the spatial trace with respect to the eigenstates
|a〉, Ea of H0, we find

Z12 = 2

(
8π h̄βµ0

3

)2

�µ1 · �µ2

∫ 1

0
�( �R1, �R2; βu)�( �R2, �R1; β(1 − u)) du (8)

where �(�r , �r ′; s) = ∑
a exp(−Eas)ψ∗

a (�r)ψ∗
a (�r ′) is the propagator. The contribution of (8) to

the electron free energy is

F12 = i

β

(
8πµ0h̄

3

)2

�µ1 · �µ2

∫ c+i∞

c−i∞
s ds

sin πs
eβζ s

∫ 1

0
du�( �R1, �R2; βsu)�( �R2, �R1; βsu′), (9)

where u′ = 1 − u and ζ is the chemical potential.
In this work we deal only with a discrete electron spectrum and the zero-temperature

limit where the propagator can be replaced by the ground state term (wavefunction ψ0).
On taking the appropriate limits, the free energy per electron reduces to 2(8π h̄µ0/3)2 �µ1 ·
�µ2|ψ0( �R1)|2|ψ0( �R2)|2. The effect of temperature will be examined in a future report. Thus
the effective hyperfine interaction between the two nuclear spins is [4]

H12 = J �µ1 · �µ2|ψ( �R1)|2|ψ( �R2)|2 (10)

where J is a constant.

3. Electron wavefunction

Now suppose that two singly ionized donor nuclei are located at the foci A and B of an ellipsoid
having equal minor axes and filled with a semiconductor described by a scalar effective mass
m∗. An electron in the conduction band then obeys the effective mass equation(

− h̄2

2m∗ ∇2 − e2

κrA
− e2

κrB

)
ψ(�r ) = Eψ(�r ), (11)

where κ is the dielectric constant. We adopt the modified atomic units h̄2/2m∗ = 1, e2/κ = 2.
Equation (11) is equivalent to the Schrödinger equation for the hydrogen molecular ion [5]
which is separable in ellipsoidal coordinates

ξ = rA + rB

R
, η = rA − rB

R
, φ. (12)

The ground state is independent of φ, the rotation angle about the z-axis, so we ignore all φ
derivatives to obtain a two-dimensional problem. One has

2

rA
+

2

rB
= 8

R

ξ

ξ2 − η2

dx dy dz = 1
8 R3(ξ2 − η2) dξ dη dφ

(13)

and [6]

∇2 = 4

R2(ξ2 − η2)

[
∂

∂ξ
(ξ2 − 1)

∂

∂ξ
+
∂

∂η
(1 − η2)

∂

∂η

]
. (14)

Thus, writing ψ(�r ) = X (ξ)S(η) one finds the separated equations

[(ξ2 − 1)X ′]′ + [2Rξ − pξ2 − A]X (ξ) = 0, (15a)

[(1 − η2)S′]′ + [A + pη2]S(η) = 0, (15b)

where A is the separation constant and p = −E R2/4. These equations are the same in the
neutral case, except that the term 2Rξ is absent in (15a).
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Figure 2. The dependence of the relative HF exchange constant Q(s) versus s, the distance of a
nuclear spin from the boundary. Upper curve: R = 2; lower curve: R = 10.

The surfaces 1 < ξ = constant are confocal ellipsoids (ξ = 1 is simply the z-axis
between the foci). The boundary conditions for equation (15a) are X (1) < ∞ (ξ = 1 is a
regular singular point), and X (ξ0) = 0, where ξ0 corresponds to the dot boundary. Note that
s = R(ξ0 − 1)/2 is the shortest distance from either focus to the boundary. The x–y plane is
η = 0. For the ground state S(−η) = S(η) and the boundary conditions for equation (15b)
are S(±1) < ∞ (η = ±1 are regular singular points) and S′(0) = 0.

To proceed, we specify a value R and integrate equation (15b) numerically starting with
S(−1) = 1, S′(−1) = −(A + p)/2 for a given value p and adjust A until S′(0) = 0 (with
no intervening nodes). Thus we effectively construct a table of A(E, R). Then a pair of
values A, p is inserted into equation (15a) which is integrated numerically with starting values
X (1) = 1, X ′(1) = −(2R − p − A)/2 and the pair is adjusted to obtain X (ξ0) = 0 (with
no intervening nodes). This gives a table of E(R, s). Then, with A and p determined, the
wavefunction X (ξ)S(η) is calculated and normalized. As a technical point, since ξ = 1 and
η = −1 are singular points, we first obtained X, X ′ at ξ = 1+10−6 and S, S′ at η = −1+10−6

by series expansion and used these values to start the numerical integration. Finally, the
(normalized) wavefunction was evaluated at ξ = 1, η = −1 (ψ(0) = ψ(R) in (10) by
symmetry).

4. Results and discussion

The calculations for the ionized case were carried out for R = 2 and 10; the unit of length
h̄2κ/m∗e2 is roughly 10–20 Bohr radii for most common semiconductors. For silicon this
corresponds to spacings of about 20 and 100 Å. From the wavefunctions we calculated Q(s),
the ratio of the coupling constant to its value at s = ∞. The results are shown in figure 2.
As expected, the relative values of the coupling constant at these inter-spin separations are
reduced substantially when either spin is close to the boundary.

Similar behaviour has also been found for the Knight shift in a metallic particle [7]
modelled as an electron gas confined in a spherically symmetric parabolic potential well.
There it was found that the shift decreased in a Gaussian fashion as the nucleus moved away
from the centre of the sphere. An analogous study of neutral donors in two-dimensional
systems has been reported by Pershyn et al [8].

Finally, in figure 3 we compare the neutral and ionized donor cases for R = 2. The
coupling between ionized donors is stronger than in the neutral case, in accordance with
a higher electron density attracted to the nuclei, and remains effective for spatially smaller
systems, although in the neutral case the coupling constant decays less rapidly as the boundary
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Figure 3. Comparison of the boundary effects for ionized (upper curve) and neutral donors. The
vertical axis is in arbitrary units.

is approached. These results suggest that in a Kane model qubit, the imbedded donor nuclei
should be located a substantial fraction of their distance from one another from the boundaries
to ensure effective hyperfine coupling. In particular, for the model introduced by Mozyrsky
et al [2], it was suggested that effective coupling between two phosphorus donor nuclear spins
could be achieved with separations up to 100 nm in a GaAs quantum well 4 nm thick where
the boundary effect examined here is ignored. The present results indicate that this is too
optimistic. The spacing between the donors must be reduced by at least a factor of two, or
the well thickness must be substantially increased to achieve the same coupling strength. This
complicates fabrication of such a device, but does not render it unrealistic.
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